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A method is described for calculating SCF open shell orbitals. In comparison 
with the coupling operator method, a greater velocity of convergency of the 
iterative process is obtained by taking into account not only the correct 
variational conditions, but also the best variations of orbitals step by step. 
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The problem of the determination of the SCF open shell orbitals arises in the 
calculation of many wavefunctions in relation to the ground state of several atoms, 
some molecules or radicals and also to many electronic excited states of atoms 
and molecules. Many authors [1-12] have reduced this problem to the deter- 
mination of the eigenfunctions of an appropriate operator (coupling operator). 
Recently Hirao and Nakatsuji [2] (hereafter referred to as H.N.) have suggested 
two very general coupling operators, showing that they satisfy the correct 
variational conditions on the orbitals, unlike many others previously proposed. 
As the coupling operators are constructed from the same orbitals to be determined, 
the problem becomes iterative: one starts from some trial orbitals and improves 
them step by step. On analogy with the procedure for the closed-shell systems, the 
problem should be solved by successive diagonalizations of the representative 
matrix of the operator. We have tried using both the proposed operators and 
have found great difficulty in reaching the convergency, even in very simple cases 
like that of the first 3S state of He. This fact has led us to analyse the iterative 
process in detail. We have noticed that the diagonalization of the matrices of the 
coupling operators does not give the best variations for the trial orbitals, although 
these operators satisfy the right variational conditions at convergency [13, 14]. So 
we propose an iterative process based on the diagonalization of the matrices 
relative to some combinations of fundamental operators. 
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We refer to the general treatment of H.N., who have reexamined the coupling 
operators for the open shells; they have paid particular attention to the intro- 
duction of the correct variational conditions, thus pointing out the mistakes of 
much previous work. The authors write the wavefunction as the sum of many 
configurations, 

q~o = ~CkTk (1) 
k 

The T[s  are antisymmetric many-electron wavefunctions, built up from n spin- 
orbitals {qSm}, where q~m =Zi c~ or ~bm= ;gift" If the set {z} of the spatial orbitals is 
orthonormal, then the energy can be written as 

E= ~fi<zi]h[Zi)+ i (aijJij-bijKij) (2) 
i = l  i , j = l  

where the coefficients f ,  %, bi~, depend on Ck'S in (1); Jij and K~j are defined as in 
Roothaan [15]. H.N. showed that the :gi orbitals can be derived as the eigen- 
functions of the 2 operator so defined: 

21:g,> = {~l:gi>- Y I:gj>(:g~l~l:gi>} + 
J 

+ 2 (3) 
j ( e i )  

and ~ are the usual operators which one obtains by differentiating (2). They 
are given by: 

~ = f ~ h +  ~ (aikJk--bik~) 
k i,j<~n 

=L.h + • (ajkJk - b~k~rk) 
k 

~ = ~ j = 0  i , j>n (4) 

2ij and 2ji are arbitrary parameters, with the conditions 2jl # 2ij, 2ji # 0, 2ij #0. 
Adding to 2 the operator 

~ = ( 1  - Z I:gj> (:gjl) Z ~ (  1 - Z I:gk>(:gk[) (5) 
j ~ k 

one obtains the new operator 2 '  = 2 + ~ ,  proposed for a correct treatment of the 
open shell problems. 2 and 2 '  satisfy the right Hermiticity conditions and the 
symmetry properties of the Lagrange multipliers; they give the correct variational 
equations, unlike many other previously proposed operators. Going into the 
details of the iterative process, we observe that from a set {:go}, we obtain the 
representative matrices of R and R', whose elements are 

0 0 Rp = <:gp 12 I:g  > 
, 0 t 0 R;q=(Zp[2 ]:gq> 

The diagonalization process combines between them the :go orbitals and gives the 
new :g orbitals which, in a first approximation, are related to the preceding ones, 
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two by two, in the following way: 

Xp =cos  0X ~ + sin 0Z ~ 

Xq = - sin 0Xp ~ + cos 0X ~ 

0 - sin 0 Rpq o r  
Rpp- Rq~ 

t 

0-~ sin 0 = Rpq 
R;p-Rqq 

(6) 

Among the combinations which lower the energy, let us consider the one between 
an occupied orbital Z ~ and a virtual one Z ~ Taking into account the expression of 

and N' ,  we have1 : 

/ _ _  0 d Z "  0 Rpq=Rpq - 
t 0 o ~  0 R . ;  R .  ; <z. I .lz.> 

Rqq= (Z~ 2 ~ilZ ~ 7~ Rqq=O 
i 

Thus it is clear that the coefficients of  the combinations and hence the steps of the 
iterative process are very different, if one uses either of the operators, even though 
they give the correct variational equations at the convergency. Because of  this 
arbitrariness, it seems that a reliable convergency of the process is not assured, 
as has in fact been remarked in many tests. We think therefore that while the work 
of  H.N. has stated precisely the conditions at the convergency, it leaves many 
unresolved problems regarding the process needed to arrive at it. For  this purpose 
we have reexamined the problem in the following way. 

Let {X ~ be an orthogonal set of trial orbitals; Xp and Xq are two orbitals obtained 
o and o by the unitary transformation from Xp ;gq 

Zp = cos 0Z ~ + sin 0)~ ~ 

)Q= - s i n  0Z ~ +cos  0Z ~ 

Substituting the new orbitals in (2) and developing trigonometric functions up to 
second order in 0, we get 

E(O) = E o + 40Fpq + 202 {Fq. - Fpp + (Jpq + Kp~) (2bpq- b p~,- b qq) 

where 

F,q=(ZplYp-~qlZq) 

Fpp=(Zpl~p-~q[Zp) 
r..= <Z.I~.-~.IZ.> 

+ 2Kpq(app+aqq- 2pq)} (7) 

1) Using the operator ~ defined by (10) in 'Ref .  [12], one obtains for this combination the same 
matrix elements as those of  ~ ' ,  if  operator ~0  is that defined in (5) and not in (7) of  that  paper, 
otherwise the interaction terms between occupied and virtual orbitals are zero and the process would 
converge to a wrong limit. 
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From (7), by minimizing with respect to O, we obtain the optimized angle 
expression 

0 -~ sin 0 = Fpq (8) 
F~p- Fqq + (Jp~ + Go)  (bpp + bqq - 2bvq ) + 2Kvq(2avq - apv - aqq) 

The denominator of  (8) can be simplified both because in some cases (bpp + 
bqq - 2bvq ) = 0 and (app + aqq- 2apq) = 0, and because Yvq and Kvq integrals are small 
as compared to the difference Fpp-Fqq. So it is possible to reduce Eq. (8) to the 
following form: 

0 - s i n 0 =  Fpq �9 ( 9 )  F.-G  
Let us notice that Eq. (9), in the approximation order that we assumed, is the 
same formula which arises in the diagonalization of the matrix F by the method of 
Jacobi. Let us compare the expressions (9) and (6), obtained from the H.N. 
operators. We consider the case in which Xp and Zq are occupied orbitals with 
$-7p #~-q (the case ~-p = ~-q gives E(O)= Eo). Taking into account the expression 
(3), the formulae (6) become 

0 _ s i n  0 -  (Zv[~'~P - ~'~q [Zq > <z.lGIz >- <zalGG> (lO) 

while the (9) becomes 

O~-sin O= (Zp [~p -  ~q[Xq <zplG-GG>- <z lG- GG> (11) 

From a comparison between (10) and (11), one can deduce that the H.N. formulae 
did not give, far from the convergency, the right linear combinations between the 
orbitals which minimize the energy. Analogous remarks can be made for the other 
combinations useful to lower the energy. 

Going back to (9), we observe that to calculate its terms, we do not need to know 
so many operators as are the orbitals: all the doubly occupied orbitals have the 
same operator, while the virtual orbitals have null operator. Let us consider, as an 
example, the fairly frequent case in which there are, in the same irreducible 
representation, m doubly occupied orbitals, two non-degenerate singly occupied 
orbitals (Zo, Zb) and k virtual orbitals. The operators which arise are the following: 

m 

,/=1 

j = l  

g =h+ 
j = l  
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where the + sign holds for singlet states, the - for the triplet. Let ~ o be the row 
vector of the trial orbitals, obtained from the basis row vector a by the C o matrix: 
)~ o = a C  0. Firstly we build up the d, a, b matrices, whose elements are thus defined: 

bij:  -bI j > 
Let C be the rectangular matrix obtained from C O drawing the columns relative 
to the doubly occupied and virtual orbitals; we use it to construct 

D= C~ dC 

If U is the matrix which diagonalizes D, C 1 = CU gives the new orbitals obtained 
by optimizing the linear combinations between doubly occupied and virtual 
orbitals. The diagonalization process involves the vanishing of all the elements 
Dij(i#j).  To be rigorous, it is necessary to make only the combinations, in accord 
with (9), between doubly occupied and virtual orbitals (i<~m,j> m + 2). None of 
the combinations into the two subsets of doubly occupied and virtual orbitals 
contributes to improving the energy and they can be skipped. Normally, however, 
the time required to completely diagonalize the matrices is negligible in comparison 
with that necessary to construct d, a and b; so the advantage is not relevant. The 
C1 matrix will replace in C o the columns corresponding to C; so we obtain the 
C ~ matrix. Now, we build up a new C matrix, drawing from C ~ the columns 
corresponding to Z ~ and virtual orbitals, and we calculate A = C*aC. If  U is the 
matrix which diagonalizes A, then C 1 = CU gives us the new singly occupied 
orbital, obtained from the optimized linear combination between Z ~ and virtual 
orbitals. The C a matrix will replace in C ~ the columns corresponding to C, and 
we obtain the C ~ matrix. In a similar way we shall act on the second singly occupied 
orbital, Z ~ to obtain C ~ Now, we construct a new C matrix drawing from C ~ the 
columns of the doubly occupied and the first singly occupied orbitals. If  U 
diagonalizes C+(d - a)C, then C 1 = CUgives us the new optimized doubly occupied 
and first singly occupied orbitals. By substitution of C a in C ~ we obtain C~ we 
operate in a similar way between the doubly occupied orbitals and the second 
singly occupied to calculate C ~ From this last matrix we shall construct a two 
column matrix C, corresponding to the two singly occupied orbitals. Diagonalizing 
C*(a-  b)C by U and replacing in C ~ the two columns of C 1 = CU, we obtain the 
C 1 matrix which gives us the new set of orbitals, {Z1}, for a successive iteration. 

Every step of SCF process is worked out by the diagonalization of six different 
matrices, obtained from the matrices relative to the three different operators. 
As we have said above, most of the time is spent in constructing the fundamental 
matrices, rather than in the subsequent diagonalizations and reelaborations; this 
is true mostly when one employs a very large basis set. The configuration scheme 
we have analyzed is very frequent; for other configurations the only variation 
consists in the number of  operators, and therefore of the matrices to be diag- 
onalized step by step. A more detailed description seems quite superfluous; 
indeed the generalization of our method is obvious. 
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Going back to (9), we observe that the form of the diagonal elements Fpp and Fqq, 
which appear on the denominator, is 

Fpv=(Zpl~p-~qlXp) 
Fqq=(Zq[~p-Yq]Xq) 

Therefore one cannot construct one operator only, whose representative matrix 
has the right elements for all pairs on the diagonal. An exception is the case of the 
closed shells, where the energy changes only by combinations between doubly 
occupied and virtual orbitals, and for the latter there is a null operator. For these 
reasons we do not think that in open shell calculations the coupling operator 
method is very suitable, even though it furnishes the right conditions at convergency. 

The above described iterative method has been checked by calculations on many 
atomic states from He to Ne and for some excited states of formaldehyde [16] 
and ethylene [17]. We have always obtained a quick convergency to the right 
SCF limit, which has also been verified by the fulfilment of the correct variational 
conditions, as reported by H.N. 
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